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The basic idea of air augmentation is to  take aboard atmospheric air and let it 

interact with the primary propulsive stream before or  while discharging through the 

ejector nozzle. This idea suggests that one has to  be concerned not only with an 

ejector problem, but also with the aerodynamics of intakes, the flow past boattails, 

and the jet- slip- stream interaction near the exit of the ejector. 

The recent development of analytical methods for dealing with the ejector prob- 

lem now makes it possible to propose and exploit quantitatively an entirely theoretical 

flow model for evaluating in-flight performance of vehicle-integrated air-augmented 

propulsion systems. 

The theoretical ejector flop model c a n  cope with a wide range of practical shroud 

configurations (especially with non-cylindrical contours) and with three basic types of 

primary- secondary stream interaction, namely, inviscid, viscid (energy transfer), 

and reactive (dterburning along fuel-rich rocket exhaust gas surface). 

In thie paper, procedures for matching intake and ejector pumping characteristics 
? 

a r e  outlined for either experimentally or theoretically available intake performance 

information. In addition, the influence of external aerodynamics such as f loy over the 

boattail and its interaction with the internal ejector performance a re  considered. 

The present method is illustrated by applying the theoretical analysis to an air- 

augmented je t  engine model investigated by NACA. Excellent agreement between theo- 

retical and experimental data is obtained fo r  static operation; in  addition, the theoreti- 

cal  model also allowe to  predict analytically the in-flight performance of the ejector b nozzle configuration, 
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' 1. . INTRQDUCTION 

The potential of air augmentation to  improve the installed performance d D r O D d -  

eive jets has received widespread attention and numerous experimental as well as theo- 

retical investigations have been conducted to explore its utilization. 

- -  

While the conceptual merits of air augmentation appear to be undisputed for ve- 

hicles whose trajectories remain within the atmosphere1, the practical implementation 

of the principle, controlled by net thrust and gross weight considerations, often indi- 

cates only marginal, if any, improvement 2 

Therefore, it  becomes evident that not a sweeping appraisal of a scheme but only 

a detailed analysis of entire systems under flight conditions based on the action and 

interaction of well understood baeic mechanisms can lead to  an understanding and evalu- 

ation of the true possibilities of air augmentation. 

The basic idea of taking aboard atmospheric air and letting it interact with the 

primary propulsive stream before or while discharging through the ejector nozzle sug- 

ges t s  that we have to be concerned not only with an ejector problem, but also with the 

aerodynamics of intakes, the flow past boattails, and the jet-slip-stream interaction 

near the exit of the ejector. 

Atthough both experimental and analytical investigations have had their share  in  

contributing to our knowledge of such component flow problems, the recent develop- 

ment of analytical methods for dealing with the ejector problem3a4 now make. it pos-' 

sible to propose, and exploit quantitatively, an entirely theoretical flow model for 

evaluating in-flight performance of vehicle-integrated air-augmented propulsion 

systems. 

2. SYSTEMS DEFINITION AND DELINEATION OF THRUST FORCE CONTRIBUTIONS 1 
I 

Each system is identified by a control domain within prescribed boundaries. Its 
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indiyidual performance characterietics are obtained by utilization of the momentum 

principle and the theoretical determination Of surface integrals by analyeis of the flow 

processes within the system. 

2 .1  Ejector 

The identifying control domain and the control surface utilized for the ejector 

analysis are shown in Figure 1. 

The theoretical analyeie of the flow problem within thie  domain yields information 

on the pumping characterietice and the preeeure and shear e t ress  distributions over 

the internal ejector shroud eurfacs. 

Thrust Force . 
This, in turn, allows determination of the Grose 

2.2 Intake 

The identifying control domain and control eurface utilized in the intake analyeie 

are shown in Figure 2. 

determination of the thruet force contributione of the eurfaces ISH (FI 

and the internal drag forcee (FOB) as may be caueed by etructural elements (etruts) 

The objective of the intake analysie (eee section 3.2) is the 

), IR ( F I ~ )  SH 

or vortex generatore. 

Figure 2 a lso drawe attention to the so-called "additive intake drag" which has to 

be accounted fnr whes iztzke forces are to  be determined on tne basie of momentum 

f l u x  integrals. Application of the momentum principle yields here 

* 
a8 including viscoue etreeeee as well (LO hydroetatic prersuree.  

Note that the preesure integral extended over wall  surfaces ehould be interpreted 
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.2.3 Entire Propulsive System 
' - . .  

2,3.1 Afterbody 

The identifi.ir;g rriiirol rIurnain and control surface utilized in the determination 

of the NET AFTERBODY THRUST FORCE are  shown in Figure 3. 

The overall system is obtained by joining the and "intake" sub-systems 

along the now internal ourfrccr ECS and I c 2  and by conridering, in  addition, the boat tdl  

surface (and force Fg). 

The result obtained is: 

Since the net afterbody thrust force can also be represented by 

the true role of the "additive intake drag" force is readily recognized. 

2.3.2 System8 Matching 

2.3.2.1 Internal matching has to be accomplished along the surfaces ECS and I c 2  (see 

Figure 3) with respect to the velocity and pressure distributions. t 

2.3.2.2 External matching has to be considered for surface ECE (see Figure 1) for. 

such combinations of external and internal flow conditions which would affect only the 

pressure  distribution over the shroud (for choked ejactqr ~perzthr.)  or,  iii addition, t a b  

secondary mass flow through the ejector (for unchoked ejector operation). 

f. 
values such as the eecondary mars  flow and a mingle representative recondory stag- 
nation pressure.  

Actually, the matching procedure wil l  remain rertricted to the matching of integral 

- 4 -  
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-' 2.. 3.3 Performance Evaluation 

The ultimate purpose of the analysis is the evaluation of the net afterbody thrust I 

the ideal convergent nozzle F ~ D , c ,  or the ideal fully expanded nozzle F1D (see section 

4 .3 .4 ) .  Especially for rocket booster analysis, weight assessments have to be made 

in order to evaluate properly the meritr of air-augmentation for specified (or optimized) 

trajectories 2 . 

The systems approach, as outlined above, provides for the formulation of per-  

formance characteristics of individual sub-systems and for their subsequent integration 

into the overall model. It is noteworthy that this can be achieved on a quantitative basis, 

and within a framework of simplifications which assure clarity in dealing with major 

design parameters without loss of essential features affecting the performance of flow 

components and the overall air-augmented system. In particular, simplifying assump- 

tions wil l  concern the nature of the secondary flow through the intake (complete uniform- 

ization of the intake flow prior to reaching the matching cross  section Ic2) and through 

the ejector (one-dimensional annular flow inside of the ejector shroud, except for the 

dissipative regions of jet mixing and wal l  boundary layer. While the theoretical treat-  

ment of the ejector problem by itself would not necessitate such restrictions, it was 

felt that the matching procedure would become unduly complicated if  rotational second- 

ary flows were included. 

In addition, the theoretical analysis of intakes will disregard the effect of additive 

drag and the influence of the intake flow on the bezttai! drag. 

Flow over the boattail is excluded altogether from the evaluation of the net after- 

body thrust force. Such information is readily available in the literature 5 D  and since 

the only cases considered here are ones for which the ejector will operate entirely un- 

affected by the external flow field over the boattail, a detailed knowledge of the flow 
- k -  



.past the boattail wil l  not be required. 

On the basis of these assumptions, the ejector analysis (given the ejector geom- 

etry and the stagnation states of the primary and secondary flows) wil l  produce: 

w, P O 8  

wP 
i) the pumping characteristic8 inthe form of a simple -= f (-) relationship3, 4; 

ii) the gross thruet, by integration of the stresses over the shroud. 

A theoretical intake flow analyeie (given the external flow approach conditions for 

both the free  stream and the boundary layer configuration) will  yield information of the 

f&. type : - = 

rations will  produce information of the form: - = 

Alternately, experimental investigation of epecific intake configu- 7 P O 6  

p o w  m k  
m 

f (- 1. PO, 

PO, m0 

For  any selected internal ejector performance point, iteme i) and ii) above, and 

afterbody operating conditions, the net afterbody thrust forces can be calculated for a 

variety of flight conditione by a ruitablo adaptation of well-known matching proceduree 

for  ejector and intake flows 9 . 

3. THEORETICAL ANALYSIS OF SYSTEM PERFORMANCE CHARACTERISTICS 

3.1 Internal Ejector Performance 

The ejector flow model i e  baeed on the inviscid and viscid interaction between the 

primary and eecondary streams3 within the confinement of generally non-cylindrical 

shrouds* with the additional consideration of the wal l  boundary layer. Fo r  the ejector 

operating in the supersonic regime3, the eecondary flow wil l  generally reach a eonic' , 

condition inside of the shroud where the secondary flow a rea  will be a minimum. In the 

a d y s i e  of this iiow regime, the inviscid interaction is coneidered first, with viscous 

effects being introduced as a modification. 

is assumed to  sustain static preeeursr which are conatant over i t a  flow croata eectione 

and continuous across  the boundary of the primary r t rsam. 

Throughout the analysie, the secondary flow 

- 6 -  
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3.1.1 Two-stream Inviecid Interaction . .  

' The primary flow field i e  determined by the method of characterietice while the 

secondary flow i e  assumed to be one-dimensional and rev~rs ib le  scikbztk. 

ary flow, for any choeen initial condition, is subject to a unique area-pressure relatioq 

and such preeeuree are matched with the rtatic preeeures at the interface between the 

primary and eecondary etream. The choking condition for the secondary e t re rm in a 

minimum croes-eectional area within the ehroud is determined by an iterative method 

The eecona- 

which involve8 the entrance Mach Number of the oecondary r t ream for a selected value 

of the stagnation preeeure ratio. 

Figure 4 ehowe echematically the inviscid flow configuration and notation while I 

I # Table I lists the eeeential features of the computer program. According to Table I, 

given the ejector geometry and information concerning primary and eecondary gae 

program producee information on the inviecid pumping characterietice and the etatic 

pressure distribution over the internal rurface of the shroud, 

viecoeity have yet to be considered. 

the 

HoweverJ the effects of 

3.1.2 Viecoue Effects - Jet Mixing 

Viscous interaction between the two etreamr occurs along their interface. This 

will result in: 

i) a transfer of energy (ehear work) from the primary to  the recondary stream, 

and I 

I 
ii) a modification of the pumping characteristics due to  the dieplacement thickneee 

of the mixing region. 

Both effects are most pronounced for relatively rmall  secondary flow rates, eee Figure 

5 ,  where the theoretically cdculated(inviecid and viecid) pumping characteristics of a 

divergent cooling-air ejector are compared with experimental data 10 , 



. 
. 3.1..3 Viscous Effects - Shroud W a l l  Shear Layer 

While the displacement effects due to the wal l  boundary layer are relatively in- 

bi;grlii;carli, L 1 . -  _ = - - -  - I  
1 _------ - * L ^ - C : - . -  ,:,,, &I---- L--J  &.. .....A..-- &LA &L -___ * 
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especially for relatively long shrouds. A computer program i e  available# which allowr ~ 

computation of boundary layer growth (including laminar-turbulent transition) in  com- 
~ 

preeeible flowo with otreamwioe preerure gradietntr r o  that the looe of grosr thrur t  ~ 

due to friction c a n  be determined. 

3.1.4 Grose Thrust 

Ultimately, on the basis of calculated internal ejector operating conditionr, the 

gross thrust can be evaluated for a variety of static operating conditions of a divergent 

ejector. Figure 6 compares the results of our theoretical calculatione with experimental 

10 data obtained by Huntley and Yrnowitt , 

3.1.5 Ejector Surface 

For  the purpose of the preeent analysis it hae been assumed that the flow through 

the ejector was unaffected by the external flow field, or etatic pressure near the exit 

cross  section. 

A more complete picture of the internal operating characterietice and different 

operating regimes of an ejector eyetem would be presented by the so-called "ejector 

surface" 3 (see figure 7). 

Also indicated in Figure 7 i e  the geometric interpretation of matching between 

the ejector L T ~  intat\= =s 2: ?ntaroect?~n of their respective )Inneratinu -r -- ----- 0 arirfaraall; -------- 

3.2 Intake Performance 

Examination of equation 2 in section 2 . 2  ehowe that the thruet force of the intake, 

# For IBM 7094, Graduate College Department of Computer Science, University of 
Illinois. 



* .  - FFR + FISH + FiOBJ can be determined, with the exception of the unknown contribution 

of the additive drag, i f  the flow conditions in the cross  sections Icl and Ic2 a re  known. 

A theoretical treatment of the intake flow problem7 i n  haaed nrr t h ~  evd-cztien ef the 

integrals over surfaces Icl and I c ~ .  Such an analysis also yields information on the 

mass flow-pressure recovery relation, section 2.3.3, but introduces two arbitrary 

as sumptions namely, 

i) that the additive intake drag i s  not considered to be a major influence on net 

thrust character i s tic s , and 

ii) that the intake flow transforms the scooped-up portion of the boundary layer 

into a one-dimeneional flow within a constant croee-section passage. 

In view of these arbitrary assumptions, experimental data on intakes must be 

utilized to  contribute to a better judgement on the merits of the theory. In particular, 

experimental information can be applied to improve on assumption ii), above, by 

introducing an efficiency for total pressure recovery such that 

= (Pas /Po=) Actual (Pee /Po,,,) Theoretical 7 I 
As reliable information on such intake efficiencies becomes available, the attrac- 

tiveness of the theoretical analysie is enhanced. The narrow limits for 9 which have 

been established experimentally for well-designed intakes thus will  give weight to the 

theoretical analysis of intake performance. 

3.2. 1 Theoretical Intake Analysis 

7 According to the assumptions advanced by Simon and Kowalski , one may analyze 

intake performance on the baeis of knowing the approaching flow conditions in the free 

s t ream (P,,,, M,) and in  the boundary layer just ahead of the intake (6, n). By direct 

application of this analysis, and by considering the flow in the boundary layer at the 

afterbody radius Ro aa  essentially two-dimensional, one utilizes the following relatione: 



. .  c 

: and 

where Me c w  be determined from 

Utilizing the graphical presentations7, relationships of the following functional form 

can be determined. 

m r r (8 1 ( -  -) = f (n, M, 7) 

and 

(5) = f (n ,  M.,,,, a) r ( 9 )  
PO, 

The momentum of the intake air wil l  be related to 

r (f:-x) = f(n, M, -1 6 
6 tpk 

Whi le  these relations do not depend on any specific information concerning the 

intake geometry (except for  the assumption of constant a rea  mixing), a given intake 

geometry will introduce a possible choking cross  section, Ac, and for a given flight 

condition, establish the efficiency 7. Both of these factors contribute to the choking 

limit of an actual intake which is of special interest in the matching problem. 

3.2.2 Utilization of Experimental Intake Data 

Experimental intake data are usually given 

ms  
n, M, -) 

Po* 6 -- - f (geometry, - 
PO, Lref’ mO 

. .  

R in the form- 

where 

- 10 - 



and n 6 
Lr ef 

are .the controlled test variables for a given inlet geometry, while 

usually not subject to systematic variations. The latter represents a definite 

- ~- 

a re  

short- 

large influence of boundary layer thickness. The theoretical analysis which covers the 

latter influence can therefore be ueed with advantage, provided sufficient confidence 

can be established for 7) values determined with the help of experimental investigations. 

To compare theoretical and experimental intake data, note that for two-dimension- 

al intakes, 

. where A, is the a rea  per unit width of the intake. 

In any case, the efficiency 3 may be considered as a parameter in the theoretical 

calculations which will  show (see eection 5 . 2 )  the importance of designing efficient in- 

takes and also indicate the levels required to achieve satisfactory thrust levels for air- 

augmented systems. 

Intake drag data can be obtained from either measured static pressure distri-  

In butions and estimated shear forces or  from direct force balance measurements. 

addition, choking limits for given intakes (within the limitations of pos sibly uncontrolled 

boundary layer thickness effects) are obviously obtained in the experiments. 

4.  MATCHING OF EJECTOR AND INTAKE OPERATING CONDITIONS 

In principle, the matching procedure is illustrated by the intersectirn of the 

ejector surface with the intake surface, Bee Figure 7. It must,'however, be remem- 

p m  Pee 
wP Pop8 pop 

bered that the ejector surface appears in the -= f ( - -) diagram while the intake 

surface is originally defined functionally by the relations 

9 A transformation into a common coordinate system must be made , 



. 
. . The internal ejector performance now has to  be interpreted in  terms of external 

flow parameters while the intake performance has to be interpreted for  a specific inter- 

nal and external afterbody geometry. 

Depending on whether theoretical or experimental intake data are to be utilized, 

the matching procedure wil l  assume different forms. 

4 . 1  Matching of Ejector and Intake (Theoretical Intake Analysis) 

The application of the continuity equation for a given geometry R /Ro, a con- IP 

vergent primary nozzle, and external flow conditions M, and $/€lo yields the following 

relationship which is used in the matching procedure. For KP = Ks = Ks 
K+ 1 

The matching is achieved ae follows: 

For  a selected operating point of the ejector, see  Figure 5, one obtains the product 

P 

The ejector geometry determines R lP  /Ro and primary nozzle geometry, here conver- 

gent, is implicitly contained in the above pressure ratio-mass flow ra te  product. The 

flight conditions contribute information on M,, n, and b/Ro.  The left side of the . 

r equation can now be expressed as a function of - 
6 '  

with n and M, being fixed. 
D 

r 
f (n, M, T ) .  Hence, ing t o  Simon.and Kowalski, can be theoretically evaluated as - = 

r - can be considered as a t r ia l  variable for calculating and matching both sides of equa- 6 
r 

tion (11), hence obtaining the operating condition, that is, the correct value for - and 
bJ 

PO, 
PO, 

m 1' PO, r - (n, M, x), and subsequently, - (n, M,, a). 
m A  Po, 



. . I To improve the quantitative aspects of the intake analyaie, the intake efficiency, 

l'), which has been defined in eection 3.2, can be introduced a e  a parameter. This 

matching procedure is iiiustratea grap-hicaiiy in Figure 9. 

It should be noted that aeide from the use of an intake efficiency, the actual shape 

Intake deeign must, however, be concerned with of the intake hae not been considered. 

determining the choking limit, which wil l  depend upon a minimum croee eection in the 

intake passage. A diecussion of intake operating conditione (subcritical, critical, or 

supercritical) wil l  be given in the following section. 

4 . 2  Matching Experimental Intake Data 

Experimental data defining the internal performance of an inlet a r e  generally pre- 

6 me P 
sented in  the form8 2 = f (- 

PO- Lref' Mm -1 m0 

where 

A, being a reference inlet area. 

In analogy to the procedure developed in eection 4.1, we may now establish 

Ejector Pr imary Nozzle Geometry F ree -  s t ream Intake 

and obtain the match point by simultaneously satisfying Equation 12. 

A s  an alternative, the well-known matching procedure of Reference 9 can aleo be 

utilized by establishing "converted" inlet and ejector maps. 

rn* . ~ n t :  latter method. is oi epeciai interest since it airo iocates the match point reiativ 

to  the choking limit of the intake. A conventional inlet map of the form 

is converted into a 

b ,  f +  M,, - 
P Lr ef P,, = 

PO, ws 
- 



. plot by transforming, for the given free stream Mach number M, the abscissa 

-= WEi (G ms ) *  (- A0 (%)e { M , , , g  *%} (1 3) 
W, r W R  lp MP 
P, P O 8  ws where- remains a parameter. 

verted by transforming, for a given free rtream Mach number M, the ordinate so that 

The conventional ejector map p- = f (-) is con- 
OP wP 

the primary nozzle pressure ratio will  again serve as a parameter. Any given flight 
- 

schedule will  epecify the relation between !k and I&,, 80 that selection of M, will - p m  

determine the parametric value of p3. The performance curves of the ejector and the 
POD - 

intake having this same primary nozzle pressure ratio will then intersect at the "match 

point.'' 

The location of the match point relative to  the choking portion of the inlet perform- 

ance curve is immediately recognized for experimentally determined intake characters. 

However, converted intake and ejector charts can also contribute to  the understanding 

of operating conditions of "theoretical" intakes, for which choking will occur when 

P O 8  p, - . -  
Po- pop 

4.3 Net Afterbody Thrust Evaluation i' 
f .  

The matching procedure of section 4.1, carried out for a given point of the internal 

wu li Po, 
Pop' wp n RO 

-), and a selected flight condition ( M ,  -, n), deter- ejector characteristic (- 
1 

, so that the primary nozzle preeoure 
=OS mined the intake operating condition and hence, - 

8 Po, 
ratio is found from equation (14) I 

- 14 - 



. c 

4..3.1 Cross Thrust 

The gross thrust can now be determined according to equation ( l ) ,  which is here 

repeated for convenience, 

as follows: 

i) by determining the thrust contribution of the primary nozzle 

ii) by evaluating the integrale relating to the secondary flow 

from the ejector code, including the viecoue correction for the pumping 

characteristic, and 

iii) by considering the thrust contribution of the internal shroud surface 

which will  include the contribution of the hydrostatic pressures ,  

from the inviscid ejector code calculation, 

the effect of wall friction (-A FB. L, ). 

boundary layer program (see section 3. 1.3). 

momentum thickness at the exit cross section of the ejector which determinor 

obtained 

(P-P,) dzE/hydrostatic, and 
JESH 

The latter is found with the help of a 

Of particular interest is the.  

4.3 .2  Intake Thruat Force 

Since the present paper ie primarily concerned with the theoretical evaluation of 

air-augmented systems, the results of section8 3.2.1 and 4 .1  will  be of principal 
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interest. For  matched conditions, the intake momentum charge (for nearly two- 

dimensional flow) is found from 

where 

r (2 .  i) = f (M,, n, -) is presented graphically in reference 7. 
‘PA 6 

4 . 3 . 3  Net Afterbody Thrust Force 

It was pointed out before that both the additive intake drag and the boattail drag 

would not be considered explicitly. Therefore, we restr ic t  ourselves to the evaluation 

4 . 3 . 4  Reference Thrust Forces 

For the purpose of easier discussion of the results obtained for specific air- 

augmented systems, the ideal thrust forces of certain specified non-augmented primary 

nozzles a re  introduced as reference values. 

4 . 3 . 4 .  1 Using as a reference the ideal convergent nozzle having a thrust force of 
KD 

4 . 3 . 4 . 2  Using as a reference the ideal, fully adjustable, convergent-divergent nozzle, . .  
K P  having a thrust force of 

i 
; 

5 .  IN-FLIGHT PERFORMANCE EVALUATION OF AN AIR-AUGMENTED JET 

ENGINE NOZZLE 

Shown in  figure 8 is a schematic sketch of the system to which the foregoing - 
~~ ~ 

- 
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. analysis. has been applied. The same configuration has been evaluated, in  static tes ts  

only, by Huntley and Yanowite, reference lo**. Specifically for this configuration, 

c. - 1. ? 5 ,  ezd s cc&ci;! di>-eZgeiice angle oi the snroud of 3.82". To 
L - -  - 1.31, - - P O  

l p  1P 
evaluate the friction effects on the internal shroud wall, a value of Reynolds Number, 

R lp = IO', was used for the experimental conditions reported. (The effects of a os - v 
OS 

internal wal l  friction were  found to  be small for the cases inveetigated; the maximum 

value found w a s  less  than 0.370 of the gross thrust. ) 

6 In addition, it was  assumed for the in-flight performance analysis that -= 0 . 2  
RO 

aim and - Ro = lo0 for all conditions. 
v051 

The results of the theoretical gross thrust calculations, as compared to experi- 

mental data reported in reference 10 has already been shown in figure 6 .  In addition, 

the comparison is presented in  a different form in figure 8-B. 

5.1 Flight Schedule 

Selection of a single internal ejector performance point results in a fixed flight 

schedule, as shown in figure 10. However, the theoretical analysis could match any 

given or desired flight schedule by repeating the calculations for other operating points 

of the internal ejector characteristic (figure 5 ) .  

5 . 2  Comparison With an Ideal Converging Nozzle 

Theoretical in-flight characteristics fo r  the chosen internal operating point, as 

affected by parametric values of intake efficiencies (see aection 3.2, ii) a r e  shown in 

figure 11, using an 1 reference the convefgeiit siozzle. The seiected exampie immediately 
I 

lreveals the importance of high intake efficiencies. Even then, for obtainable values of 
I 

I 
ihtake efficiencies , the direct improvement remains marginal. One should, however, 

~ ~~ - 

** The configuration investigated by Huntley and Yanowitz is attractive for  the 
present analysis because it incorporates a relatively long and non-cylindrical ejector 
shroud in  conmst  to other geometries for which in-flight performance data has been 
reported1 1, 12. 



, keep in rhnd that the installed performance of the convergent nozzle could suffer sub- 

stantially from the high transonic base pressure drag penalties due to jet-slip-stream 

I interaction - -  a situation which couici iargeiy be avoided. by i'na praseni air-augmented 

configuration. 

5 .3  Comparison With an Ideal Fully Expanded C-D Nozzle 

When using the ideal fully adjustable C-D nozzle as reference, the selected air- 

augmented system immediately fails to qualify as a thrust- augmentation scheme, at 

least when the reference nozzle i s  not penalized for sl ip-stream interaction or for dif- 

ferences in boattail drag, see figure 12. 

6. CONCLUSIONS 

The presented method of theoretical analysis allows an evaluation of static and 

in-flight performance for air-augmented systems. While the present analysis remained 

restricted to  cold primary streams, an extension to hot operation including reactive 

mixing13 i s  possible. 

Comparison between calculated and experimental gross thrust performance was 

possible and indicated good agreement, with the theoretical analysis giving slightly con- 

servative results which can be attributed t o  the simplified treatment of the intake flow. 

The selection of a specific configuration, namely an air-augmented jet engine 

designed for operation through the transonic flight regime, was  consistent with the 

present status of ejector computer codes at the University of Illinois which allow con- 

sideration of non-cylindrical ejector shrouds but a r e  momentarily limited to only 

moderately underexpanded or 

vergent pr imary nozzle was not essential fo r  the general procedure. 

, 

nverexpanded primary jets. The restriction to a con- 

Future studies c a n  be carr ied out with the help of revised ejector codes which will 

allow the theoretical evaluation of air-augmented rocket systems involving convergent- 
- - 
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t . .  
. divergent primary nozzlee, larger primary nozzle preerure  ratios, larger shroud to 

, .  . 

nozzle diameter ratios, and hot or  even reacting primary jete. 
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NOMENCLATURE 

a Velocity of sound 

A Area when eubecripted 

A, B, C Coefficients in equation defining the ohroud wall contour 

D 

E 

F 

f 

H 

I 

K 

L 

M 

m 

n 

P 

R 

r 

S 

T 

V 

Diameter 

Areas in ejector control domain 

Force  or  thrust 

Functional relationship 

Boundary layer form factor 

Areas in Intake control domain 

Ratio of specific heats 

Ejector shroud length 

Mach number 

Mass flow rate (intake) 

Boundary layer velocity profile exponent 

P reesu re  

Radius, radial coordinate or g a s  conotant 

Normal distance from boundary layer generating eurface to  intake lip 

Area  in control domain analyeis 

Absolute temperature 

Velocity 

- 20 - 
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J 8 

: w  , Mass flow rate (ejector) 

Z Longitudinal coordinate 

- r n  
(-e 3 Product of the maaa-tiow-rate ratio and the intake height-to-boundary 

layer thickneae for the theoretical intake anrlyeie, reference 7. ' 
m r  

(- -) Product of the mass-flow-rate ratio and the intake height-to-boundary m layer thickneoe fo r  the experimental intake malyeir ,  reference 8 .  

Intake recovery prerrura  ratio, reference 7 .  Theoretical7 

6 Boundary layer thicknerr 

7 Intake pressure recovery efficiency referenced to  the theoretical valuer 
of reference 7. 

0 Streamline angle or  boundary layer momentum thicknerr 

U Kinematic vie comity 

P Radius of curvature or density 

0 r - (n, M,, -) Defined in reference 7 
04 b 

(:* =) 

Subs c ript 8 

0 Stagnation conditions 

Defined in reference 7 
6 'QL 

1 Section 1 

2 Section 2 

W Free-st ream 

Act. Actual conditions 

B Bo att ail 

B. L. Boundary layer 

C 

E Ejector 

G ttGros a I t  

Where maer is t tcrorringtt  o r  "choking'' 



I 

ID 

ZD, C 

Ml-3 

MCa 

n 

Net 

OB 

P 

r 
6 

Ref 

S 

SH 

W 

- 

.A L 

Intake 

Ideal fully expanded nomle 

Ideal Converging aocele 

Function of Me 

Function of M, 

Function of n 

Net value 

Obstruction 

Primary Stream 

r Function of - 
6 

Reference value 

Secondary etream 

Shroud 

Shroud wall 

Super s c r i p  - s 

* Sonic conditione 

- 22 - 
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WHERE : 
6 (ADDITIVE DRAG) = -1 (P- Id% 

A =A 

FB (BOATTAIL DRAG) = -I, (P- P,)dSB 

CAN ALSO BE REPRESENTED QY: 

WHERE: 

. = F  + F  +F 1 ‘SHROUD €SH I S H  e 

. 

: 

FIG. 3 CONTROL DOMAIN FOR ANALYSIS OF 
NET AFTERBODY THRUST FORCE. 
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I N P U T ’  DATA 
I .  EJECTOR GEOMETRY 
2. PRIMARY GAS AND FLOW’CONDITION (Kp f MIP) 

3.1 SECONDARY GAS (Ks) 

CALCULATION PARAMETER 
PRESSURE RATIO (Pis! Pop) 

’* (WITH VARIABLE MIS THIS YIELDS POS/POP) 

VARIABLE 
INITIAL SECONDARY MACH NO. (MIS) 
(EQUIVALENT TO Ws / Wp.) 

1. 

SOLUTION OUTPUT DATA 
I. Mlsf I AND W s / W p  
2. INFORMATION ABOUT JET BOUNDARY ,e.q., Rp(z) 
3. WALL PRESSURE DISTRIBUTION Pw(Z)  
4. PRESSURE -AREA INTEGRAL ON SHROUD 

TABLE I, ESSENTIAL CHARACTERISTICS OF 
INVISCID EJECTOR COMPUTER 
PROGRAM 5 (7094 I B M  SYSTEM1 
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